Cube Roots and Higher Order Roots

other roots

Cube Roots
and
Other Radicals

Square roots ask what squared is the radicand. A geometric explanation is that given the area of a square, what’s the side length? A geometric explanation of a cube root is given the volume of a cube, what’s the side length. The way you find the volume of a cube is multiply the length by itself three times (cube it).

The way we write cube root is similar to square roots, with one very big difference, the index.

a squareroot a 3 cuberoot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaGcaa qaaiaadggaaSqabaGccqGHsgIRcaaMc8UaaGPaVlaadohacaWGXbGa amyDaiaadggacaWGYbGaamyzaiaaykW7caaMc8UaamOCaiaad+gaca WGVbGaamiDaaqaamaakeaabaGaamyyaaWcbaGaaG4maaaakiabgkzi UkaaykW7caaMc8Uaam4yaiaadwhacaWGIbGaamyzaiaaykW7caaMc8 UaamOCaiaad+gacaWGVbGaamiDaaaaaa@5A15@

There actually is an index for a square root, but we don’t write the two. It is just assumed to be there.

Warning: When writing cube roots, or other roots, be careful to write the index in the proper place. If not, what you will write will look like multiplication and you can confuse yourself. When writing by hand, this is an easy thing to do.

3 8 8 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaka aabaGaaGioaaWcbeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVpaakeaabaGaaGioaaWcbaGaaG4maa aaaaa@4718@

To simplify a square root you factor the radicand and look for the largest perfect square. To simplify a cubed root you factor the radicand and find the largest perfect cube. A perfect cube is a number times itself three times. The first ten are 1, 8, 27, 64, 125, 216, 343, 512, 729, 1,000.

Let’s see an example:

Simplify:

16 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca aIXaGaaGOnaaWcbaGaaG4maaaaaaa@384A@

Factor the radicand, 16, find the largest perfect cube, which is 8.

8 3 × 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca aI4aaaleaacaaIZaaaaOGaey41aq7aaOqaaeaacaaIYaaaleaacaaI Zaaaaaaa@3B46@

The cube root of eight is just two.

2 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaake aabaGaaGOmaaWcbaGaaG4maaaaaaa@3847@

The following is true,

16 3 =2 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca aIXaGaaGOnaaWcbaGaaG4maaaakiabg2da9iaaikdadaGcbaqaaiaa ikdaaSqaaiaaiodaaaaaaa@3BAA@ ,

only if

( 2 2 3 ) 3 =16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIYaWaaOqaaeaacaaIYaaaleaacaaIZaaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIZaaaaOGaeyypa0JaaGymaiaaiAdaaaa@3D4F@

Arithmetic with other radicals, like cube roots, work the same as they do with square roots. We will multiply the rational numbers together, then the irrational numbers together, and then see if simplification can occur.

( 2 2 3 ) 3 = 2 3 × ( 2 3 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIYaWaaOqaaeaacaaIYaaaleaacaaIZaaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIZaaaaOGaeyypa0JaaGOmamaaCaaaleqabaGaaG 4maaaakiabgEna0oaabmaabaWaaOqaaeaacaaIYaaaleaacaaIZaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaa@43AC@

Two cubed is just eight and the cube root of two cubed is the cube root of eight.

2 3 × ( 2 3 ) 3 =8×( 2 3 )( 2 3 )( 2 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa aaleqabaGaaG4maaaakiabgEna0oaabmaabaWaaOqaaeaacaaIYaaa leaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaO Gaeyypa0JaaGioaiabgEna0oaabmaabaWaaOqaaeaacaaIYaaaleaa caaIZaaaaaGccaGLOaGaayzkaaWaaeWaaeaadaGcbaqaaiaaikdaaS qaaiaaiodaaaaakiaawIcacaGLPaaadaqadaqaamaakeaabaGaaGOm aaWcbaGaaG4maaaaaOGaayjkaiaawMcaaaaa@4B2C@

2 3 × ( 2 3 ) 3 =8× 222 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa aaleqabaGaaG4maaaakiabgEna0oaabmaabaWaaOqaaeaacaaIYaaa leaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaO Gaeyypa0JaaGioaiabgEna0oaakeaabaGaaGOmaiabgwSixlaaikda cqGHflY1caaIYaaaleaacaaIZaaaaaaa@4957@

2 3 × ( 2 3 ) 3 =8× 8 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa aaleqabaGaaG4maaaakiabgEna0oaabmaabaWaaOqaaeaacaaIYaaa leaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaO Gaeyypa0JaaGioaiabgEna0oaakeaabaGaaGioaaWcbaGaaG4maaaa aaa@4351@

The cube root of eight is just two.

8× 8 3 =8×2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiabgE na0oaakeaabaGaaGioaaWcbaGaaG4maaaakiabg2da9iaaiIdacqGH xdaTcaaIYaaaaa@3F0E@

( 2 2 3 ) 3 =16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIYaWaaOqaaeaacaaIYaaaleaacaaIZaaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIZaaaaOGaeyypa0JaaGymaiaaiAdaaaa@3D4F@

Negatives and cube roots: The square root of a negative number is imagery. There isn’t a real number times itself that is negative because, well a negative squared is positive. Cubed numbers, though, can be negative.

3×3×3=27 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG 4maiabgEna0kabgkHiTiaaiodacqGHxdaTcqGHsislcaaIZaGaeyyp a0JaeyOeI0IaaGOmaiaaiEdaaaa@4293@

So the cube root of a negative number is, well, a negative number.

27 3 =3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacq GHsislcaaIYaGaaG4naaWcbaGaaG4maaaakiabg2da9iabgkHiTiaa iodaaaa@3BF3@

Other indices (plural of index): The index tells you what power of a base to look for. For example, the 6th root is looking for a perfect 6th number, like 64. Sixty four is two to the sixth power.

64 6 =2because 2 6 =64. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca aI2aGaaGinaaWcbaGaaGOnaaaakiabg2da9iaaikdacaaMb8UaaGza VlaaykW7caaMc8UaaGPaVlaadkgacaWGLbGaam4yaiaadggacaWG1b Gaam4CaiaadwgacaaMc8UaaGPaVlaaykW7caaIYaWaaWbaaSqabeaa caaI2aaaaOGaeyypa0JaaGOnaiaaisdacaGGUaaaaa@51D6@

A few points to make clear.

·         If the index is even and the radicand is negative, the number is irrational.

·         If the radicand does not contain a factor that is a perfect power of the index, the number is irrational

·         All operations, including rationalizing the denominator, work just as they do with square roots.

Rationalizing the Denominator:

Consider the following:

9 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaWaaOqaaeaacaaIZaaaleaacaaIZaaaaaaaaaa@385F@

If we multiply by the cube root of three, we get this:

9 3 3 3 3 3 3 = 9 3 3 9 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaWaaOqaaeaacaaIZaaaleaacaaIZaaaaaaakiabgwSixdbb Opaaaaaasvgza8qadaWcaaqaamaakeaabaGaaG4maaWcbaGaaG4maa aaaOqaamaakeaabaGaaG4maaWcbaGaaG4maaaaaaGcpaGaeyypa0Za aSaaaeaacaaI5aWaaOqaaeaacaaIZaaaleaacaaIZaaaaaGcbaWaaO qaaeaacaaI5aaaleaacaaIZaaaaaaaaaa@454D@

Since 9 is not a perfect cube, the denominator is still irrational. Instead, we need to multiply by the cube root of nine.

9 3 3 9 3 9 3 = 9 9 3 27 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaWaaOqaaeaacaaIZaaaleaacaaIZaaaaaaakiabgwSixdbb Opaaaaaasvgza8qadaWcaaqaamaakeaabaGaaGyoaaWcbaGaaG4maa aaaOqaamaakeaabaGaaGyoaaWcbaGaaG4maaaaaaGcpaGaeyypa0Za aSaaaeaacaaI5aWaaOqaaeaacaaI5aaaleaacaaIZaaaaaGcbaWaaO qaaeaacaaIYaGaaG4naaWcbaGaaG4maaaaaaaaaa@4619@

Since twenty seven is a perfect cube, this can be simplified.

9 3 3 = 9 9 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaWaaOqaaeaacaaIZaaaleaacaaIZaaaaaaakiabg2da9maa laaabaGaaGyoamaakeaabaGaaGyoaaWcbaGaaG4maaaaaOqaaiaaio daaaaaaa@3CA4@

And always make sure to reduce if possible.

9 3 3 =3 9 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaWaaOqaaeaacaaIZaaaleaacaaIZaaaaaaakiabg2da9iaa iodadaGcbaqaaiaaiMdaaSqaaiaaiodaaaaaaa@3BC7@

This is a bit tricky, to be sure. The way the math is written does not offer us a clear insight into how to manage the situation. However, the topic we will see next, rational exponents, will make this much clearer.

 

Practice Problems:


Simplify or perform the indicated operations:

1. 64 4 2. 9 3 +4 9 3 3. 9 3 ×4 9 3 4. 64 5 5. 7 7 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIXa GaaiOlaiaaykW7caaMc8+aaOqaaeaacaaI2aGaaGinaaWcbaGaaGin aaaaaOqaaaqaaaqaaiaaikdacaGGUaGaaGPaVlaaykW7daGcbaqaai aaiMdaaSqaaiaaiodaaaGccqGHRaWkcaaI0aWaaOqaaeaacaaI5aaa leaacaaIZaaaaaGcbaaabaaabaaabaGaaG4maiaac6cacaaMc8UaaG PaVpaakeaabaGaaGyoaaWcbaGaaG4maaaakiabgEna0kaaisdadaGc baqaaiaaiMdaaSqaaiaaiodaaaaakeaaaeaaaeaacaaI0aGaaiOlai aaykW7caaMc8+aaOqaaeaacaaI2aGaaGinaaWcbaGaaGynaaaaaOqa aaqaaaqaaiaaiwdacaGGUaGaaGPaVlaaykW7caaMc8+aaSaaaeaada GcaaqaaiaaiEdaaSqabaaakeaadaGcbaqaaiaaiEdaaSqaaiaaioda aaaaaaaaaa@6089@

2 thoughts on “Cube Roots and Higher Order Roots

  1. An interesting session. Another way to approach these problems, eg., #5 ,is to convert everything to exponents: square root of seven becomes seven to the one-half power. the cube root of 7 in the denominator becomes seven to the minus one-third power. Then combine the terms to 7 to the three sixths power times seven to the minus two-sixths power. this simplifies to 7 to the one-sixth power, i.e., the sixth root of 7.
    It’s a good exercise to check one’s work with a calculator….Everybody’s different, so i won’t go into that…
    Any opinion?

    • I agree with you, 100%! I far prefer using rational exponents to the radical notation. The tools available are more powerful and the notation itself makes more sense. Some people question why we even use the radical notation anymore. The rational exponent materials are what I’m working on now, but they’re a little trickier to put together.

Leave a Comment