Exponents Part 1

exponents part 1

Exponents Part 1

Reading Math

One of the biggest things to understand about math is how it is written. The spatial arrangement of characters is syntax. Syntax, in English, refers to the arrangements of words to convey meaning.

Exponents are just a way of writing repeated multiplication. If we are multiplying a number by itself repeatedly, we can use an exponent to tell how many times the number is being multiplied. That’s it. Nothing tricky exists with exponents, no new operations or concepts to tackle. If you’re familiar with multiplication and its properties, exponents should be accessible.

That said, it is not without its pitfalls. A balance between conceptual understanding and procedural short-cuts is needed to avoid those pitfalls. The only way to strike that balance is through a careful progression of exercises and examples. An answer-getting mentality will lead to big troubles with exponents. People wishing to learn how exponents work must seek understanding.

Let’s establish some facts that will come into play with this first part of exponents.

1.      Exponents are repeated multiplication

2.      Multiplication is repeated addition

3.      Addition is “skip” counting

To simplify simple expressions with exponents you only need to know a few short-cuts, but to recall and understand, we need more. These facts are important.

With an exponential expression we have a base, the number being multiplied by itself, and the exponent, the small number on the top right of the base which describes how many times the base is being multiplied by itself.

a 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaGynaaaaaaa@37C9@

The number a is the base. We don’t know what a is other than it is a number. It’s not a big deal that we don’t know exactly what number it is, we still know things about this expression.

Five is the exponent, which means there are five a’s, all multiplying together, like this: aaaaa. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw SixlaadggacqGHflY1caWGHbGaeyyXICTaamyyaiabgwSixlaadgga caGGUaaaaa@444F@

Something to keep in mind is that this expression equals another number. Since we don’t know what a is, we cannot find out exactly what it is, but we do know it’s a perfect 5th power number, like 32. See, 25 = 32.

What if we had another number multiplying with a5, like this:

a 5 b 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaGynaaaakiabgwSixlaadkgadaahaaWcbeqaaiaaioda aaaaaa@3BEE@

If we write this out, without the exponents we see we have 5 a’s and 3 b’s, all multiplying together. We don’t know what a or b equals, but we do know they’re multiplying so we could change the order of multiplication (commutative property) or group them together in anyway we wish (associative property) without changing the value.

a 5 b 3 =aaaaabbb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaGynaaaakiabgwSixlaadkgadaahaaWcbeqaaiaaioda aaGccqGH9aqpcaWGHbGaeyyXICTaamyyaiabgwSixlaadggacqGHfl Y1caWGHbGaeyyXICTaamyyaiabgwSixlaadkgacqGHflY1caWGIbGa eyyXICTaamOyaaaa@5437@

And these would be the same:

( aa )( aaa )( bbb ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaeyyXICTaamyyaaGaayjkaiaawMcaamaabmaabaGaamyyaiab gwSixlaadggacqGHflY1caWGHbaacaGLOaGaayzkaaWaaeWaaeaaca WGIbGaeyyXICTaamOyaiabgwSixlaadkgaaiaawIcacaGLPaaaaaa@4D37@

( aa )[ ( aaa )( bbb ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaeyyXICTaamyyaaGaayjkaiaawMcaamaadmaabaWaaeWaaeaa caWGHbGaeyyXICTaamyyaiabgwSixlaadggaaiaawIcacaGLPaaada qadaqaaiaadkgacqGHflY1caWGIbGaeyyXICTaamOyaaGaayjkaiaa wMcaaaGaay5waiaaw2faaaaa@4F29@

( aa ) [ ab ] 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaeyyXICTaamyyaaGaayjkaiaawMcaamaadmaabaGaamyyaiaa dkgaaiaawUfacaGLDbaadaahaaWcbeqaaiaaiodaaaaaaa@403F@

a 2 [ ab ] 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaGOmaaaakmaadmaabaGaamyyaiaadkgaaiaawUfacaGL DbaadaahaaWcbeqaaiaaiodaaaaaaa@3C79@

This is true because the brackets group together the a and b, making them both the base. The brackets put them together. The base is ab, and the exponent is 3. This means we have ab multiplied by itself three times.

Keep in mind, these are steps but exploring how exponents work to help you learn to read the math for the intended meaning behind the spatial arrangement of bases, parenthesis and exponents.

Now, the bracketed expression above is different than ab3, which is abbb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw SixlaadkgacqGHflY1caWGIbGaeyyXICTaamOyaaaa@4070@ .

( ab ) 3 a b 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaamOyaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiab gcMi5kaadggacaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@3EBF@

Let’s expand these exponents and see why this is:

( ab ) 3 a b 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaamOyaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiab gcMi5kaadggacaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@3EBF@

Write out the base ab times itself three times:

( ab )( ab )( ab )abbb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaamOyaaGaayjkaiaawMcaamaabmaabaGaamyyaiaadkgaaiaa wIcacaGLPaaadaqadaqaaiaadggacaWGIbaacaGLOaGaayzkaaGaey iyIKRaamyyaiabgwSixlaadkgacqGHflY1caWGIbGaeyyXICTaamOy aaaa@4C39@

The commutative property of multiplication allows us to rearrange the order in which we multiply the a’s and b’s.

aaabbbabbb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw SixlaadggacqGHflY1caWGHbGaeyyXICTaamOyaiabgwSixlaadkga cqGHflY1caWGIbGaeyiyIKRaamyyaiabgwSixlaadkgacqGHflY1ca WGIbGaeyyXICTaamOyaaaa@5310@

Rewriting this repeated multiplication we get:

a 3 b 3 a b 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaG4maaaakiaadkgadaahaaWcbeqaaiaaiodaaaGccqGH GjsUcaWGHbGaamOyamaaCaaaleqabaGaaG4maaaaaaa@3E2A@

The following, though, is true:

( a b 3 )=a b 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaamOyamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiab g2da9iaadggacaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@3DFE@

On the right, the a has only an exponent of 1. If you do not see an exponent written, it is one. If we write it out we see:

( abbb )=abbb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbGaeyyXICTaamOyaiabgwSixlaadkgacqGHflY1caWGIbaacaGL OaGaayzkaaGaeyypa0JaamyyaiabgwSixlaadkgacqGHflY1caWGIb GaeyyXICTaamOyaaaa@4D78@

In summary of this first exploration, the base can be tricky to see. Parenthesis group things together. An exponent written outside the parenthesis creates all of the terms inside the parenthesis as the base. But if numbers are multiplying, but not grouped, and one has an exponent, the exponent only belongs to the number just below it on the left. For example, 4 x 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI hadaahaaWcbeqaaiaaiodaaaGccaGGSaaaaa@3956@ the four has an exponent of just one, while the x is being cubed.

Consider: ( x+5 ) 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaey4kaSIaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4m aaaakiaac6caaaa@3BC4@ This means the base is x + 5 and it is multiplied by itself three times.

( x+5 ) 3 =( x+5 )( x+5 )( x+5 ) ( x+5 ) 3 x 3 + 5 3     MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada qaaiaadIhacqGHRaWkcaaI1aaacaGLOaGaayzkaaWaaWbaaSqabeaa caaIZaaaaOGaeyypa0ZaaeWaaeaacaWG4bGaey4kaSIaaGynaaGaay jkaiaawMcaamaabmaabaGaamiEaiabgUcaRiaaiwdaaiaawIcacaGL PaaadaqadaqaaiaadIhacqGHRaWkcaaI1aaacaGLOaGaayzkaaaaba WaaeWaaeaacaWG4bGaey4kaSIaaGynaaGaayjkaiaawMcaamaaCaaa leqabaGaaG4maaaakiabgcMi5kaadIhadaahaaWcbeqaaiaaiodaaa GccqGHRaWkcaaI1aWaaWbaaSqabeaacaaIZaaaaOGaaeiiaiaabcca caqGGaaaaaa@55E5@

Repeated Multiplication Allows Us Some Short-Cuts

Consider the expression:

a 3 × a 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di eB1vgapeGaamyya8aadaahaaWcbeqaaiaaiodaaaGccqGHxdaTqqa6 daaaaaGuLrgapiGaamyya8aadaahaaWcbeqaaiaaikdaaaGccaGGUa aaaa@4153@

If we wrote this out, we would have:

aaa×aa MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di eB1vgapeGaamyyaiabgwSixlaadggacqGHflY1caWGHbWdaiabgEna 0cbbOpaaaaaasvgza8GacaWGHbGaeyyXICTaamyyaaaa@483B@ .

(Note: In math we don’t use colors to differentiate between two things. A red a and a blue a are the same. These are colored to help us keep of track of what’s happening with each part of the expression.)

This is three a’s multiplying with another two a’s. That means there are five a’s multiplying.

a 3 × a 2 = a 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di eB1vgapeGaamyya8aadaahaaWcbeqaaiaaiodaaaGccqGHxdaTqqa6 daaaaaGuLrgapiGaamyya8aadaahaaWcbeqaaiaaikdaaaGccqGH9a qpcaWGHbWaaWbaaSqabeaacaaI1aaaaaaa@4379@

Before we generalize this to find the short-cut, let us see something similar, but is a potential pitfall.

a 3 × b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di eB1vgapeGaamyya8aadaahaaWcbeqaaiaaiodaaaGccqGHxdaTqqa6 daaaaaGuLrgapiGaamOya8aadaahaaWcbeqaaiaaikdaaaaaaa@4098@

If we write this out we get:

aaa×bb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaa6di eB1vgapeGaamyyaiabgwSixlaadggacqGHflY1caWGHbWdaiabgEna 0cbbOpaaaaaasvgza8GacaWGIbGaeyyXICTaamOyaaaa@483D@

This would not be an exponent of 5, in anyway. An exponent of five means the base is being multiplied by itself five times. Here we have an a as a base, and three of those multiplying, and a b as a base, and two of those multiplying. Not five of anything.

The common language is that if the bases are the same we can add the exponents. This is a hand short-cut, but if you forget where it comes from and why it is true, you’ll undoubtedly confuse it with some of the other short-cuts that follow.

Short-Cut 1: If the bases are the same you can add the exponents. This is true because exponents are repeated multiplication and the associative property says that the order in which you group things does not matter (when multiplying).

a m × a n = a m+n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaamyBaaaakiabgEna0kaadggadaahaaWcbeqaaiaad6ga aaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWGTbGaey4kaSIaamOBaa aaaaa@410D@

The second short-cut comes from groups and exponents.

( a 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaaa@3A43@

This means the base is a3, and it is being multiplied by itself.

a 3 × a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaG4maaaakiabgEna0kaadggadaahaaWcbeqaaiaaioda aaaaaa@3BB8@

Our previous short cut said that if the bases are the same, we can add the exponents because we are just adding how many of the base is being multiplied by itself.

a 3 × a 3 = a 3+3 = a 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaG4maaaakiabgEna0kaadggadaahaaWcbeqaaiaaioda aaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaaIZaGaey4kaSIaaG4maa aakiabg2da9iaadggadaahaaWcbeqaaiaaiAdaaaaaaa@431A@

But this is not much of a short cut. Let us look at the original expression and the outcome and look for a pattern.

( a 3 ) 2 = a 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaeyypa0JaamyyamaaCaaaleqabaGaaGOnaaaaaa a@3D26@

Short-Cut 2: A power raised to another is multiplied.

( a m ) n = a m×n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaWbaaSqabeaacaWGTbaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaWGUbaaaOGaeyypa0JaamyyamaaCaaaleqabaGaamyBaiabgE na0kaad6gaaaaaaa@40CE@

Be careful here, though:

a ( b 3 c 2 ) 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaabm aabaGaamOyamaaCaaaleqabaGaaG4maaaakiaadogadaahaaWcbeqa aiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiwdaaaaaaa@3D08@ = a b 15 c 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaadk gadaahaaWcbeqaaiaaigdacaaI1aaaaOGaam4yamaaCaaaleqabaGa aGymaiaaicdaaaaaaa@3BFF@

Practice Problems

1.       x 4 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGinaaaakiabgwSixlaadIhadaahaaWcbeqaaiaaikda aaaaaa@3C18@

 

 

 

 

8. ( 5xy ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aI1aGaamiEaiaadMhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaioda aaaaaa@3B23@

2.       y 9 y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa aaleqabaGaaGyoaaaakiabgwSixlaadMhaaaa@3B36@

 

 

 

 

9. ( 8 m 4 ) 2 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aI4aGaamyBamaaCaaaleqabaGaaGinaaaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabgwSixlaad2gadaahaaWcbeqaaiaaio daaaaaaa@3F41@

3.       z 2 z z 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa aaleqabaGaaGOmaaaakiabgwSixlaadQhacqGHflY1caWG6bWaaWba aSqabeaacaaIZaaaaaaa@3F64@

 

 

 

 

10. ( 3 x 5 ) 3 ( 3 2 x 7 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIZaGaamiEamaaCaaaleqabaGaaGynaaaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaG4maaaakmaabmaabaGaaG4mamaaCaaaleqabaGaaG OmaaaakiaadIhadaahaaWcbeqaaiaaiEdaaaaakiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaaaa@413A@

4.       ( x 5 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaWbaaSqabeaacaaI1aaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaaa@3A5B@

 

 

 

 

11. 7 ( 7 2 x 4 ) 5 7 3 x 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4namaabm aabaGaaG4namaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqa aiaaisdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiwdaaaGccq GHflY1caaI3aWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaCaaaleqa baGaaGynaaaaaaa@42C5@

5.       ( y 4 ) 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG5bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaI2aaaaaaa@3A5F@

 

 

 

 

 

12. 5 3 + 5 3 + 5 3 + 5 3 + 5 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaCa aaleqabaGaaG4maaaakiabgUcaRiaaiwdadaahaaWcbeqaaiaaioda aaGccqGHRaWkcaaI1aWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG ynamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiwdadaahaaWcbeqa aiaaiodaaaaaaa@41F4@

6.       x 3 + x 3 + x 3 + x 8 + x 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgUcaRiaadIhadaahaaWcbeqaaiaaioda aaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaam iEamaaCaaaleqabaGaaGioaaaakiabgUcaRiaadIhadaahaaWcbeqa aiaaiIdaaaaaaa@4334@

 

 

 

13. 3 2 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaCa aaleqabaGaaGOmaaaakiabgwSixlaaiMdaaaa@3AB4@

 

 

 

 

 

7.       4 x + 4 x + 4 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa aaleqabaGaamiEaaaakiabgUcaRiaaisdadaahaaWcbeqaaiaadIha aaGccqGHRaWkcaaI0aWaaWbaaSqabeaacaWG4baaaaaa@3D87@

 

 

 

14. 4 x 4 x 4 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa aaleqabaGaamiEaaaakiabgwSixlaaisdadaahaaWcbeqaaiaadIha aaGccqGHflY1caaI0aWaaWbaaSqabeaacaWG4baaaaaa@4057@

 

 

 

 

 

 

 

 

 

Leave a Comment